Feature Extraction Techniques of Non-Stationary Signals for Fault Diagnosis in Machinery Systems
نویسندگان
چکیده
Previously, fault diagnosis of fixed or steady state mechanical failures (e.g., pumps in nuclear power plant turbines, engines or other key equipment) applied spectrum analysis (e.g., fast Fourier transform, FFT) to extract the frequency features as the basis for identifying the causes of failure types. However, mechanical equipment for increasingly instant speed variations (e.g., wind turbine transmissions or the mechanical arms used in 3C assemblies, etc.) mostly generate non-stationary signals, and the signal features must be averaged with analysis time which makes it difficult to identify the causes of failures. This study proposes a time frequency order spectrum method combining the short-time Fourier transform (STFT) and speed frequency order method to capture the order features of non-stationary signals. Such signal features do not change with speed, and are thus effective in identifying faults in mechanical components under non-stationary conditions. In this study, back propagation neural networks (BPNN) and time frequency order spectrum methods were used to verify faults diagnosis and obtained superior diagnosis results in non-stationary signals of gearrotor systems.
منابع مشابه
A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملA Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملA Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملApplication of Signal Processing Tools for Fault Diagnosis in Induction Motors-A Review-Part II
The use of efficient signal processing tools (SPTs) to extract proper indices for the fault detection in induction motors (IMs) is the essential part of any fault recognition procedure. The 2nd part of this two-part paper is, in turn, divided into two parts. Part two covers the signal processing techniques which can be applied to non-stationary conditions. In this paper, all utilized SPTs for n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013